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ABSTRACT

A theoretical investigation of the response of multilayered composite laminates to

concentrated and distributed dynamic surface loads is carried out. IMch layer of tie laminate

is assumed to be transversely isotropic and dissipative with arbitrarily y oriented symmetry axis.

The dissipative property of the material is modeled approximately through the introduction of

a frequency dependent damping function. A multiple transform technique is used to calculate

the spectra and time histories of the displacements and stresses produced by a variety of dynamic

loads, and the quantitative features of the waves produced in the laminate are determined. The

methodology developed in this work is expected to be useful in the prediction of the response

of composite laminates to impact loads and also in the characterization of acoustic emission (AE)

sources in these materials under static and dynamic loads.
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I. INTRODUCTION

It is well known that laminated composites often suffer significant internal damage when

they are subjected to localized dynamic surface loads. The damage may involve fiber breakage

and debonding as well as delamination between the individual laminae.

observed to occur even at relatively low impact speeds resulting in a

carrying capacity of the laminae, While the damage is caused by the

Such damage has been

severe loss in the load

stresses which develop

within the material, the precise nature of these stresses and their relationship to the degree and

mode of the damage are not clearly understood at plesent. This is particularly true in the

dynamic case where the stresses are caused by waves whose propagation characteristics are

strongly influenced by the inherent anisotropy and heterogeneity of the composite material.

With the increasing use of advanced composites in a variety of modem applications, it

has become necessary to employ reliable and effective nondestructive evaluation (NDE) methods

to determine the integrity and serviceability of structural composites. Conventional ultrasonic

NDE methods, e.g., through-transmission and pulse-echo, based on longitudinal waves, have

been effective in detecting relatively large isolated flaws that are parallel to the surfaces of the

laminate, but these methods are less useful in detecting and characterizing other common defects,

e.g. , transverse cracks and partial delamination. The use of ultrasonic experiments consisting

of guided waves and contact type transducers have the potential to provide more powerful

nondestructive characterization methods for composites. However, the wave phenomena

associated with these methods are less well understood than those associated with the

conventional techniques and the realization of the full potential of these newer techniques will

require a deeper understanding of the of the wave phenomena than is available at present.
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The response of plates to dynamic loads has been studied theoretically by many authors

in the past. In much of the early work quasi-static and approximate plate theories have been

used[see e.g., Chow (1971); Moon(1973); Sun and Tan (1984); Lal (1984)]. When a composite

laminate is subjected to low velocity impact, the generated wavelengths are long compared with

its overall dimensions, and the quasistatic and thin plate approximation may be used in stress

anal ysis with useful results. However, for high speecl impact as in

inspection of structural components, the loading rate is several orders

that for low-velocity impact and the wavelengths aT e comparable

ultrasonic nondestructive

of magnitude higher than

to the thickness of the

individual laminae. It is clear that neither quasi-static approximations, nor thin plate theories

are adequate in analyzing these problems [Lib and Mal (1995)]. Moreover, there is increasing

interest in the use of thicker laminates in a variety of structural applications where the thin plate

assumption may not be justified, even for low velocity impact, and where contact type

transducers may be needed to increase penetration dej>th of the waves. A fill elastodynamic

theory needs to be employed in the solution of the problem in order to obtain accurate estimates

of the wave field. Such solutions for the isotropic and quasi-isotropic (i. e., transversely

isotropic with symmetry axis normal to the plate surface) cases have also been obtained [e.g.

Ceranoglu and Pao (1981), Weaver and Pao (1982), Vasudcvan and Mal (1985). The

elastodynamic response of a unidirectional composite laminate has been solved by Ma] and Lih

(1992) and by Liu and Achenbach (1994). To the authors’ knowledge, the exact solution of the

response of multilayered composite laminates to localized dynamic loads has not appeared in the

literature. Although the finite element method has the potential to handle these problems, and

a mumber of codes are currently avaliable [e. g., DYNA3D], the applicability of these codes has
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so far been restricted due to the enormous amount of computing effort required in dealing with

realistic problems and to the difficulty in giving physictil interpretation to the numerical results

as well as in accounting for the radiated energy for problems involving propagation in extended

media.

In this paper a multitransform technique coupled

by Ma] (1988) is used to calculate the displacement and

with the global matrix method developed

stress fields in a multilayered composite

laminate due to a concentrated or distributed dynamic surface load.

11. MATERIAL MODELING

Each lamina in the multilayered composite is modeled as a transversely isotropic and

dissipative material (Mal, Bar-Cohen, and Lib, 1992). We assume at the beginning that the time

dependence of the field variables is of the form e-i’”. Solution to problems with arbitrary time

dependence can be obtained in a straight forward manner by Fourier inversion of the frequency

domain results. In the frequency domain the linear constitutive  equation of the transversely

isotropic material with its symmetry axis along the xl-axis can be expressed in the form
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Following

— C23)/2,  Uij is the Cauchy’s  stress tensor, ~i is the displacement vector and

Cs~ are the five independent complex stiffness constants of the material.

Mal, Bar-Cohen and Lih (1991), we assume that the complex stiffness

constants Cij are related to the real stiffness constants cij of the material through

Al = al /(1 +  b~~), A2  -  ~2 /(1 +  b~~))

A3 = ra3 /(1 +- ip @a~), A4 = a4 /(1 + @@~), A5 = a5 /(1 + ip)

where

(2)

and ai is similarly related to Cti. The damping function p is of the form

p = po[l  + ao(~ - l)2W -- fo)l (3)
fo

where f = o/27r is the frequency m cycles, H(f) is the Ileawslde step function, and PO, ao,
. . f. are

constants which determine the degree of decay in the amplitude of the waves with propagation

distance. The first term in the right hand side of (3) represents dissipation due to internal

friction and other thermodynamic effects, while the second term represents the attenuation

caused by wave scattering by the fibers and other inhornogeneities in the material.

III. SOLUTION OF THE DYNAMIC SURFACE LOAD PROBLEM

Consider a multilayered composite laminate of infinite lateral dimensions consisting of

N laminae and total thickness H subjected to the surface loading j_(X1, Xz, ?) as shown in Fig. 1.
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A global coordinate system X(X1, Xz, X3) with origin o~l the top surface of the laminate and an

auxiliary local coordinate system X(XI, X2 , X3) in each lamina with the xl-axis along the fiber

direction and x~-axis coincident with the global X3-axis are introduced. The fiber direction in

the mth Iamina makes an angle 4“ with the Xl-axis and the thickness of the mth lamina is h“.

The displacement and stress components in the m* lamina are denoted by ~im and ffijm in the

global coordinate system and by U: and titim in the local coordinate system. Then the

displacements and stresses in the local and global coordinate systems are related by

where

I

c -s o

[L “J = Sco

‘lil-[Lm][H+im]ll
I\c’ s’ -2CS

Y [in’] = s’ C2 2CS

Cs -Cs c’ - s’

and c = cos(q!f”) s = Sin(om). Assuming that ./i(Xl, X?, U) is the Fourier time transform of the

surface loading ~(X1, Xz, ?) and denoting the Fourier time transform of the displacement and the

stress components ~im(X, 1), uUm(X,  ?) by fi~(X, U), 6tin’(X, u), the governing equation becomes

6 i;j ‘mm
+p(Jui=o



This equation must be supplemented by the constitutive equation(1) and the solution must satisfy

the outgoing wave (or radiation) condition at large lateral distances

The boundary conditions on the faces of the laminate are

6~~(X], X2, O, ‘) - ‘~i(xl> ‘z> ‘)

tii:(xl, X2 , H, 0) = Q i =1, 2, 3

from the load.

(4a)

(4b)

Assuming that no

continuous across

delamination occurs at the interfaces, the traction and displacement must be

the interfaces parallel to the X1-XZ plane, i.e,

Z2y’(xl, X2, x;, ~) “= Ztim(x, , X2, X3”, CO)

6~j-’(Xl, X * ,  X3”, 0) - ai~(x~> ‘z, ‘3m> ‘)

i = 1, 2, 3; m = 2, . . . . N

(5)

where X3m is the location of the

assumption of initial rest, ll~(X,

double spatial Fourier transforms,

interface between layer m and layer m-1. Then under the

“ ‘(X, u) can be obtained through the introduction ofU), Ujj

tlim(x, O), 6ijn’(X, ~) and ~i(X1, Xz, U) defined by

(6a)

(6b)

(6c)
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I where K1 and Kz are the global wave numbers in Xl and X2 directions, respective y. The details

I of the solution for the displacement and stress components using the global matrix formulation

I introduced in Ma] (1988) can be found in Lih and Mal (1995). It should be noted that the well

known precision problem at high frequencies do not occur in this method [Mal, 1988].

I In this paper, we assume that the load is normal to the surface of the laminate and that

I it can be separated into a time dependent function jl(?) and a spatially distributed function g(X1,

X2); i.e., $ = j2 = O and j~ = fit) g(X1, X2). Let the Fourier time transform of$(t) be ~(u), and

the spatial double Fourier transform of g(xl, %) be G@l, Kz). Then

{F} = fiti)  {O, O, G(K,, Q}

where

HG(K1, ~2) “ .: . .m g(xl, X2) e -i(K’x’+K’X’)  dx1dx2

(7)

(8)

For a point load at the origin, g(x, y) ~= 8(x)6(Y), and G(K1, K2) = 1. For distributed

loads, G(K1, K2) can be evaluated analytically or numel ically. In this paper two types of loads

are used in the calculations:

1) Uniform unit load distributed in a rectangular region

Consider a dynamic loading uniformly distributed over a rectangular region 2a x 2b on

the surface of the laminate (Fig. 2a). Then the normal force g(X1, X2) can be expressed as

g(Xl, X~=l, -a< XI Ca ad-b eXz<t~

= O, elscwhert’

and
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4sin(Kfl)sil@2b)
G(KI, KJ - 4Lbio COS(K,X1)COS(K2X2)  dx1dx2  -  ———..——

KI Kz

2) Uniform load distributed in a circular region

If the load is uniformly distributed within a circle of radius a (Fig. 2b), then the normal

force g(X1, Xz)canbe  expressedas

g(x~,x~) =  l,X~+-X22  <a*

= O, elsewhere.

and

MG(K1, ~2) -- ~“ ~’ e ‘R(~’mo+~2ting) dR dO

2naJ1(Ka)

K
, (K # O)

2ma , (K- O)

where K =#(K12 +K/)and J1(x)is tie Bessel fincticJn oftl~efirst kind oforderl.

3) Gaussian distribution

Iftheloading  isa Gaussial~distribution  ontiesutiace  ofthcplate (Fig. 2c), then

g(X1, X2)can reexpressed inthefonn

x:.x;.—
g(xl, X2) = j e s’

where P is a measure for the strength of the load and s is the standard deviation of the

distribution function. With a change of variable to polar coordinates R, 0, G(KI, K2) can be

expressed as



-K2~2c1 —-
- — e4

2

where .10 is the Bessel function of the first kind of order O, It remains to evaluate the

wavenumber integrals in (6) for a suite of frequencies and Fourier inversion using FFT in order

to obtain the displacement and stress time histories at a given point in the composite. This is

accomplished through the use of an adaptive two-dimensional numerical integration scheme

described in Ma] and Lih (1992).

IV. NUMERICAL EXAMPLES

Numerical results for the response of unidirectional and multilayered composite laminates

to different types of dynamic surface loads are presented. In all calculations the laminate is

assumed to be made up of a AS4/4501 graphite/epoxy composite; its elastic properties are given

in Table. 1. The nominal thickness of the laminate is 1 mm. The unit used for force is KN and

that for stress is GPa. Approximate results based on the classical plate theory and the shear

deformation theory are compared with the exact results, and the range of validity of the

approximate solution is determined.

The Force Time History

Three types of pulses are considered in this paper. In order to examine the nature and

extent of the numerical] y generated noise before the arrival of the source-generated disturbances

at the receiver, a time delay ?0 was introduced in the source function. This time delay results

)0



Table 1. Material constants of graphite-

~T c“

1.578 I 160.73 I 6.44 I 13,92

?poxy composite laminate used in the calculations

6,92 I 7.07 I 0.005 I 0.3 I 0.1

in a phase shift in the frequency domain.

1) A full cycle sine pulse

The sine pulse is useful in developing NDE methods. The function ~(t) and its Fourier

transform ~(ti) can be expressed as

fir) = sin(27tl/~), O < t < T

iti T
ni ‘~.— e , ((l) = 27t/T)
o

It can be shown that for 7 = 1 ps the source spectrum vanishes at zero frequency, is maximum

at 1 MHz and becomes negligibly small beyond about 5 MHz.

2) A sine-square pulse

This type of source function often arises in impact problems. The function fit) and its

Fourier transform ~(co) can be expressed as

For 7 = 1 ps the source spectrum has a maximum at zero frequency and becomes negligibly

small beyond about 3 MHz.

3) A Gaussian Pulse
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j(t) - sin2(nt/z), O < ? < ~

~(o) = J e “o ’ -1 –, (u # 2x/T)
20 [1 - (@~/2~)2]

-T/4, (m -  27t/z)

The function R?) and its Fourier transform ~(o) can expressed as

For o = 1 ps the source spectrum has a maximum at zero frequency and becomes negligibly

small beyond about 1 MHz.

Typical frequency domain results for the kernel Uj (KI, O) in a 1 mm [0,90], composite

laminate at 0.5 MHz frequency are shown in Fig. 4 for the exact solution, shear deformation

plate approximation, and the classical plate approximation. It is obvious that the approximate

solutions are inaccurate as was previously found in Lih and Mal (1995). The time history of

the stress component UI ~ for the distributed load in a circle with the sine square pulse shape for

a unidirectional composite at different locations on its top surface is shown in Fig. 5. The case

of the concentrated load with the full cycle sine pulse is shown in Fig. 6. It can be seen that

in both Figs. 5 and 6 the stress waves travel fmter along 0°, and that the point source produces

higher frequency oscillations in the stresses.

The results for multilayered laminates are shown in Figs. 7 through 11. In these figures

@ refers to the angle of propagation of the waves to the fibers in the top lamina. Fig. 7 shows

the time history of the normal displacement on the top surface of a quasi-isotropic [0, *45, 90],

12



laminate subjected to the Gaussian distributed load with the full cycle sine pulse for b = O and

T = 0.5 ps. It can be seen Ihat the main pulse in the suface motion is the flexural wave and the

high frequency oscillations appear after the main pulse. The spectra of the time histories are

plotted in Fig. 8. The peaks in the spectra are associated with the high frequency oscillations

of the time histories and they occur at frequencies corresponding to the first cut-off of the higher

mode in the dispersion curves (c. f. Mal, Yin, and Bar-Cohen, 1991). The time history and

spectra of oss at the first interface (X3 = 0.125 mm) in the quasi-isotropic laminate subjected

to the load on the square area with full cycle sine pulse are shown in Fig. 9 for ~ = O and T =

1 ps. It can be seen that the time history of o~~ consists of a pulse equal to the negative of the

source followed by highly oscillatory waves. The maximum stress at a distance of 5 mm from

the origin is about 20% of the traction at the source. Furthermore, the frequency of the

oscillation is higher for field points close to 0° and 90° and decays out faster at 45°. The

calculation of u~q can be used to predict the delamination between the lamina. Fig. 10 shows

the spectra of Fig. 9. As in Fig. 8, the main distinguishing feature of the spectra is the peak

at the cutoff frequencies. Fig. 11 shows the time history and spectra of u~q at the interfaces,

X3 = 0.25 mm and 0.75 mm, in a [0, 90]$ laminate subjected to a concentrated load and the full

cycle sine pulse for b = O and 7 = 1 ps. It can be seen that the bottom interface under the

source is subjected to strong tensile stresses even thoup,h the loading at the top is compression,

which may cause delamination at this interface.
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V. CONCLUDING REMARKS

The elastodynamic field produced in unidirectional and multilayered composite laminates

due to localized dynamic surface loads have been studied in this paper. The proposed multiple

transform technique appears to work well and is able to calculate the displacements and stresses

for concentrated as well as distributed surface loads of arbitrary time dependence. Although the

associated numerical codes are CPU-intensive, they are much more efficient than other available

codes for the analysis of three-dimensional models of the composite laminate. The method is

expected to be useful for the prediction of failure modes of structural composites. The method

can also be used in developing NDE methods for the prediction of the waveforms produced by

point source triggers with contact type of transducers. Future work should involve parameter

studies for different stacking sequences of the lamina and various types of sources.
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Figure Captions:

Fig. 1. Geometry of the composite laminate.

.

Fig. 2. Surface load: (a) in a rectangular area (b) in a circular area
(c) Gaussian distribution.

Fig. 3. Time history and spectrum of source fimction for (a) a full cycle of sin pulse (b) a
full cycle of sin-square pulse (c) a Gaussian.

Fig. 4. Behavior of the kernel Us for a 1 mm [0,90], composite laminate at frequency = 0.5
MHz.

Fig. 5. The time history of the stress 011 in a 1 mm unidirectional composite laminate
subjected to a uniform distributed surface load on a 1 mm raclius circular region, with a sine
square pulse for ~ = 5 ancl ~ = 1 ps.

Fig. 6. The time history of the stress ul, in a 1 mm unidirectional composite laminate subject
to a point load with a sine pulse for ~ = 5 and ~ = 1 ps.

Fig. 7. The time history of the displacement U3 in a 1 mm [0, *45, 90], comPosite laminate
subjected to a Gaussian distributed surface load with a sine pulse for b = O and 7 = 1 ps.

Fig. 8. Spectra of Fig. 7.

Fig. 9. The time history of the stress u~~ in a 1 mm [0, A45, 90], composite laminate
subjected to a uniform] y distributed surface load on a 2 x 2 mm2 square with a sine pulse for
to =Oand T=lps.

Fig. 10. Spectra of Fig. 9.

Fig. 11. The time history of the stress oj~ in a 1 mm [0, 90], composite laminate subjected to
a concentrated surface load with a sine square pulse for b‘ = O and 7 = 1 w.
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